Oxidative Addition/Reductive Elimination

OXIDATIVE ADDITION

- Addition of R-X (*e.g.* H_2 , $HSiR_3$, HBR_2 , ArI, HCI) to the metal.
- Metal oxidation state increases by 2 units (e.g. $Ir^{I} \rightarrow Ir^{III}$).
- Various mechanisms possible (concerted, S_N2, Radical x 2, Ionic see later).
- Familiar main group example = Mg + ArBr \rightarrow ArMgBr Grignard.

REDUCTIVE ELIMINATION

Opposite of Oxidative Addition

Oxidative Addition Mechanisms

Oxidative Addition Mechanisms - Overview

OA Mechanism	Type of L _x M	Type of X-Y	Features
Concerted (3-centre addition)	(1) coord. Unsat., (2) sterically uncongested, (3) $3^{rd} > 2^{nd} >> 1^{st}$ row TM, (4) filled orbital capable of interacting with the s* orbital of incoming X-Y \rightarrow Often d ⁸ complexes [<i>e.g.</i> IrCl(CO)(PR ₃) ₂].	Fairly non-polar substrates: H–H, R ₃ C–H, R ₃ Si–H strained R ₃ C-CR ₃ , Ar–X not very common	 (1) <i>cis</i>-addition (2) retention of config. at RR'R"C-Y (3) 2nd order, ΔS[‡] ~ -30 e.u., rate <i>not</i> greatly affected by solvent polarity.
Nucleophilic (S _N 2)	Nucleophilic metals <i>e.g.</i> IrCl(CO)(PR ₃) ₂ , Ni(PR ₃) ₄ , Pd(PR ₃) _n	Polarized substrates: R_3C-X (1° > 2° > 3°) (Mel > Etl > ^{<i>i</i>} Prl), Also Cl_2 , Br_2 , l_2	 (1) <i>cis</i>- or <i>trans</i>-addition (2) inversion of config. at RR'R"C-Y (3) 2nd order, ΔS[‡] ~ -40 to -50 e.u., rate accelerated in polar solvents.
Radical (chain or non-chain mechanisms)	Non-chain = Ni(PPh ₃) ₃ , Pt(PPh ₃) ₃ Chain = IrCl(CO)(PMe ₃) ₂ Binuclear = Mn ₂ (CO) ₅ , Co(CN) ₅ ³⁻	R ₃ C–X, R ₃ Sn–X (3° > 2° > 1°)	 (1) cis- or trans-addition (2) racemization of RR'R"C-Y (3) only the radical chain mechanism is accelerated by radical initiators and retarded by radical inhibitors
lonic (H⁺ or X⁻ attacks first)	(a) 18 e^{-} Pt(PPh ₃) ₄ + H ⁺ Cl ⁻ (H ⁺ attacks first) (a) 16 e^{-} Ir(COD)(PR ₃) ₂ ⁺ + H ⁺ Cl ⁻ (Cl ⁻ attacks first)	H–X (largely dissociated in solution)	

Oxidative Addition Mechanisms - Overview

- In general : Non polar substrates (*e.g.* H–H, C–H, Si–H) → Concerted Halogens (Cl₂, Br₂, I₂) → Nucleophilic Alkyl halides → Nucleophilic (S_N2) or Radical Acids (HCl, HBr, HI) → Ionic
- For Alkyl Halides, distinguish a S_N2 or radical mechanism by determining whether 3°, 2° or 1° R–X react faster, whether the reaction leads to racemization or inversion at RR'R"C–X, and whether the reaction is accelerated by radical initiators and retarded by radical inhibitors.
- For a radical mechanism, distinguish between a chain or non-chain process by whether the reaction is affected by radical initiators or inhibitors.
- If it is necessary to distinguish between a concerted or S_N2 mechanism, determine whether X and Y are *cis* or *trans*-disposed in the product, whether the reaction leads to retention or inversion of stereochemistry in RR'R"C–X, and whether the reaction is accelerated in polar solvents.